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Simple,Effective Computation of Principal Eigenvectors and thkeir Eigenvalues
and Application to High~Resolution Estimation of Frequencies

D.W. Tufts and C.D. Melissinos

Department of Electrical Engineering
University of Rhode Island
Kingston, RI 02881

Abstract

We present the results of am investigation of the Promy-Lanczos (P-L)
method {14,38] and the power method ([39] for simple computation of
approximations to a few eigenvectors and eigenvalues of a Eermitian matrix.
We are motivated by realization of high-resolution signal processing in an
integrated circuoit. The computational speeds of the above methods are
analyzed. They are completely dependent om the speed of a matrix—vector
product operation. If only a few eigenvalues or eigenvectcrs are needed, the
suggested methods can substitute for the slower methods of the LINPACX or
EISPACK subroutine libraries. The accuracies of the suggested methods are
evaluated using matrices formed from simulated data comsisting of two
sinusoids plus ganssian nonise, Comparisons are made with the corresponding
eigenvalues and eigenvectors obtained using LINPACK. Also the accuracies of

frequency estimates obtained from the eigenvectors are compared.
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I. Introduction

We are motivated by the use of eigenvectcr decormpositions c¢f data
matrices or estimated covariance matrices for detection of signals in noise
and for estimation of signal parameters. This has evolved from early work of
Liggett [1] and Cwsley [2], to adaptive-array-detection improvements cf
Tufts and EKirsteins [3,33] and high-resolution parameter estimators of
Cantoni and Godara [4], Bienvenu and Kopp [5], Owsley [6], Schmidt [21] and
Tufts and RKumaresan [7,32].

Principal component analysis, using principal eigenvalues and
eigenvectors of a matrix, was initiated by Karl Pearsom (1901) [8], and
Frisch (1929) [9] in the problem of fitting a line, a plane or in general a
subspace to a scatter of points in a higher dimensional space. Eckart and
Young [34] presented the use of singular value decomposition for finding
low—rank approximations to rectangmlar matrices. C.R. Rao examined the
applications of principal component analysis [10]. Eigenvector analysis is
also used in image processing to provide efficient cipresentations of
pictures [11]. Recently, principal component analysis -as been coupled with
the Wigner mixed time-frequency signal representation to perform a variety
of signal processing operations [28,30,31],

Linear Prediction techniques for estimetion of signal parameters,which
are modern variants of Prony’s method, <can be improved using eigemvector
decomposition [7]. Prony’'s method is a simple procedure for determining the
values cof parameters of a linear combination of exponential functions. Now
“Piuny’'s method” is usually tiken to mean the least squares extension of the
method as presented by Rildebrand [13]. The errors in signal parameters
which are estimated %y Prony'’s method can be very large [14]. If the data

is composed of undamped sinusoids, the forward and backward prediction




equations and a prediction order larger than the number of signal components
can be used simulitaneocusly as 1idvocated by Nutall [22], Ulrych and Clayton
[23], and Lang and McClellan [24]. Tufts and Kumaresan have shown how one
can improve such methods of parameter estimation by going through a
preprocessing step before application of Prony’s method [7,15,16,17].
The measured data matrix or the matrix of estimated covariances is replaced
by a matrix of rank M, which is the best least squares approzimation to the
given matrix, If there is no prior information about the value of M, it is
estimated from the data using singular value decompositon (SVD),

The eigenvalue problem [37)] is one area where extensive research has
been done and well established algorithms are available in highly optimized
mathematical libraries such as LINPACK and EISPACK [40] .The computational
complexity of these algorithms is of order 0(N3) where N is the size of the
matrix, They solve for the complete set of eigenvalues and eigenvectors
of the matrix even if the problem requires only a small subset of them to be
computed. For the above applicatioms,only a few principal eigenvectors and
eigenvalues are needed. Hence,we would like to use a method which uses this
specializaticn to reduce the computations.

Tufts and Kumaresan [29,32,33] have suggested procedures for
improving Prony's method without computation of eigenvectors. These appear
to perform about the same as the more complicated approaches which use
eigenvaliue and eigenvector decomposition. The approach im [29] is based on
the results of BHocking and Leslie for efficient selection of a best subset
[25]. The approach of [32] and [33] is based on the simple computations

which result from using the longest possible prediction interval.
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IFere we investigate two different approaches to achieving SVD-1like
improvement to Prony's method without the computaticnal cost of actually
computing the SVD or computing all eigemnvectors and eigenvalues. The idea
is to calculate the few,necessary eigenvalues and eigenvectors using the
power method [39] and a method of Lanczos [14]. Our derivation of Lanczos'’
method stresses the connection with Prony’'s method . The metkods are
analyzed and their amounts of computation are calculated. Simulations are
performed and results are compared to the singular value decomposition

method in LINPACK,

II. The Prony-Lanczos Method

Let us assume that we start with a given square,Hermitian matrix A for
which we want to compute the principal eigenvectors and eigenvalues. For
examples, this could be either the true underlying, population covariance
matrizx or the estimated covariance matrix [36] from spatial or temporal
data., Let us also define the eigenvectors and eigenvalues associated with

the matrix A (dimemsion A=p).

AEi = }.121 N i = 1,2,...,n (1)

* . .

where u; ‘uy = 0, 1i#j
gi.'uj =1, i=j , that is u., are orthonormal vectors. (2)

1

The asterisk is used to denote a complex conjugate transpose.
The characteristic polynomial associated with the matrix A is given by
det(A - xI) =0 (3)
Fxpanding the determinant we have the polynomial equation
A e p Al e =0 (4)
and the roots of this polynomial will give us the eigenvalues li of the

matrix. W%e briefly summarize the procedure for obtaining the eigenvalues A;




based on the Lanczos "power sums” as presented in [14]. We shall show that
the eigenvalues car then be obtained from the power sums by Frony’s method
{13].

Let us select a starting vector b,. Ve assume that the starting vector
Eo has a non-zero projection on the eigenvectors of the matrix A
corresponding to the eigenvalues that we want to compute.

We then analyze the vector §0 in the reference system of the vectors

{Ei}' which are the set of orthonormal eigenvectors of the matrixz A:

by =tymy *Tpuyt .. . tT 0, (5)

t
Ty T omp b,

(6)
Hence, using equation (1),successive vectors formed by premultiplications

of b, by powers of the matrix A can be represented as follows

by T Aby, =T AU T Ay Bt T A By

by = A%b, = Aby =ty A2 mg t g Aty k. . Lt n (N

X _ Ak _ _ X k k
bee1 = A7 B = Aby = Ty Ay 3yt Ty Ay Byt T Ay uy
Let us form the set of basic scalars:
]
Ci+k = bj by =k by (8)

Then we shall have:

° T |tll2 llk + |12|2 le e o F ‘rnl2 xnk = 130. Ak b

b, (9

which were called by Lanczos the "weighted power sums" [14] ,
The problem of obtaining A;'s from the c;’'s is the "problem of weighted
moments” [14]. That is the problem of Prony [12] and the old and modern
versions of Prony's method can be used to estimate the A.’'s.

The prediction—error—-filter equations of Prony’s method can be written

as follows:




Cogo * “181 * cn—lgu—l - Cn =0
Clgo * €281 * * cngn-l * Ca+1 © 0
(10a)
+ =
°a86 T Cn+181 T - ®20-18p-1 * ®25 = 0
or in matrix form,
C-g=20 (10b)
A non-zero solution is possible if the determinant of C is zero.
From the theory of Prony’s method [13]
gOv) = A+ g AT L g n g =0 (11)

hence the polynomial coefficient vector g is also orthogonal to the vector

{1 Ay xiz e Xik}T where A;'s are the eigenvalues of the matrix A.

Lanczos noticed that Prony’s method can be simplified if we -ubstitute

the sequence {1 Ay Xiz

A%} for a row of the matrix C to form a matrix
C'. If we replace the matrix C by C' in (10b), the non-zero vector g is

still a solution, because of (11). Hence the determinant of C’' must be zero.

1 A A e
1 1 1
det C* = C c [o] [+
o 1 2 n
= P'(ki) =0 (12)
Chm1 Cpr oottt Sy

Hence, the ki's can be obtained directly by finding the zeros of the

polynomial p’{z). That is, Lanczos showed that it is not necessary to first




solve equations (10) for the prediction—error—filter coefficients.

Thus,in tke absence of noise, we know tbhat enterirg the weighted power
sums ¢y of (8) in equation (12) and finding the roots of the resulting
polynomial will provide us with accurate estimates of the true eigenvalues
A; of the covariance matrix A. Note also, that equation (12) can be
reduced to a 289 order equation involving only c, €1, ©9, c¢3 and still
provide us with accurate solutioms for our problem of estimating ome or two
sinusoids.

Now, if our data is composed of one or two complex sinusoids, then the
(LxL) covariance matrix elements will be also one sinusoid or a sum of two
sinusoids, hence the rank of the matrix will be one or two,respectively.
The eigen—decomposition of the matrix will show that it has only one or two
non-zero eigenvalues and hence it can be characterized by a linear
combination of one or two eigenvectors, corresponding to the principal non-
zero eigenvalues. In Appendix A it is shown that these eigenvectors cam be
expressed as a linear combination of <complex sinusoids which have
frequencies equal to these of the sinusoids composing the data,

Now,suppose that we have accurately determined a few eigenvalues,say
two,A; and A,,from the (pxn) matrix A. Ve wish to determine the
corresponding eigenvectors. Two concepts are used : (a) premultiplication of

th eigenvector component of

a vector by the matrix ( A-A;I ) removes the i
that vector and (b) if a vector , to a good approximation,comnsists only of M
eigenvector components ,them removing (M-1) of these components leaves

one, isolated eigenvector component,

Let us consider the special case of a rank two matrix

L $
A = Xqujay *+ Apujuy (13)




From equations (5} and {(13) we have:

Abo = lelgl + Tzkzgz (14)

Then,our preliminary,unnormalized estimates of the two principal

eigenvectors are

El’ = (A‘XzI)APO = (A‘lzl)(flklgl+lezgz) =

r1k1221 + 1212232 ~ Tirihamg - r2*22‘32 =

= rlkl(kl-kz)gl (15)
And similarly for the second eigenvector estimate we have
22' = Tzkz(lz—xl)gz (16)

Normalizing the eigenvectors u,' (i=1,2) we can write (15) and (16) as

21 = ejel ul ; elz angle Of rlkl(xl—kz) (17)

ed92 Uy 5 8y= angle of Tyag(Ry=Ay) (18)

In general ,given the required eigenvalues from the earlier Prony

calculation,we estimate an unnormalized kth eigenvector from the fermula

u' = T (ARI) Ab, (19)

i#k




where tke number of factors in :he product depends c¢n the number of
significant eigenvector components in Ago.

Finally, a few comments should be made on the selection of the starting
vector b,. Ouor sole assumption until now Las been that b, has a nom-zero
projection on some eigenvector of A that we want to compute. A good Eo
vector would have to be biased in favor o: ¢ principal eigenvectors. Ve
bave found that the Fourier vector provides a very good selection for 90'
This vector will have its fundamental frequency computed from the maximum
peak of the DFT data spectrum. Very frequently in signal processing
applications the data is preprocessed through a DFT step for a coarse
analysis. This is a valuable *onus for our wmethod to use the available

information for further processing.

II1. The Power Method

Suppose A is a Hermitian (nxn) matrix. The SVD theorem [37] states

that A can be written as:

A=0-+s - Ut (20)

where U is & unitary matrix and S is a matrix consisting of real only
diagonal elements [37].
The power method computes the dominating singular vectors ome at a time

and is based on solving the equation:

su = Am (21)
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for the singular vector n and the singular value s. The power method uses
an iterative scheme to solve (21). Ve instead suggest a two-step solution

using an appropriate starting vector 90:

o = Ab, /1A b,] (22)

The singular value is chosen to be:

s; = Ao f] (23)

In order to obtain the next singular vector, the estimated singular plane

(9191T) is removed from A using the following deflation procedure [37]:

A" = A - s g glr (24)

and the procedure is repeated with matrix A to yield sj,uj.

The selection of 90 is very important and the Fourier vector provides a
very good estimate. This preprocessing step can be implemented in VLSI very
efficiently using summation—by-parts [28] or the Fast Hartley Transform
[42,43] methods. A necessary thing raquired to implement the pcwer method
is a circuit capable of computing matrix vector products of the form Au.
But the rounding errors associated with it are always worrisome limiting the
usefulness of the power method. For this reason we propose to use the
permuted difference coefficients (PDC) algorithm [26,27] coupled with the
known Fourier vector to perform the above operation with high accuracy and
no round-off errors. A VLSI implementation for the PDC algorithm can be

easily realized using a random access memory (RAM) toghether with a read-




only-memory (ROM) where the original Fourier coefficients and the subsequent

reordered coefficients addresses are stored.

IV, Operation count

In this section we c¢alculate the total operaticns needed for the
singular value decomposition (LINPACK), the Prony-Lanczos method and the
Power method.

(1), The matrix eigenvalue problem has been solved in both LINPACEK and
EISPACK mathematical libraries. The LINPACK SVD routine is presented here.
The solution can be divided in three steps: reduction to bidiagonal
form,initialization of the right and left unitary matrices U and V and the
iterative reduction to diagonal form.

The reduction to bidiagonal form has the following floating point

multiplication count (for a square NxN matrix):

21 N3 - N3/3]

Approximately the seme number of additions are required.
In the second step the amount ~f work involved when only the right-hand

side matrix V is computed, is:

aN3/3

floating point multiplies and approximately the same number of additions.
In the last step rotations are used to reduce the bidiagonal matrix to

diagonal form. Thus the amount of work depends on the total number of

10
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rotations needed. If this opumber is r, then we have the following

pmuitiplication counts:

4Nr

The number r is quite difficult to estimate. There exists an upper bound for

r,

r & sN2/2

where s is the maximum number of iterations required to reduce a
superdiagonal element as to be considered zero by the comnvergence criterion.

Hence the total operation count for the LINPACK SVD solutiom is:

2N3+4Nr < 2N3(s+1)  flops

where by the term "flop” we denote a floating point multiply-add operation.
(2). The Prony-Lanczos method is entirely dependent on the speed of a
matrix-vector product operation . For a rank two square matrix of size N we
shall have:
The matrix-vector multiplications to determine the vectors b; involve
N floating point multiplications and (N-1) floating point additions per row

for a total of

N2 flops

( 282 flops for the two vectors by,by ). The scalar weights ¢, ,i=0,1,2,3

11




require vector—-vector inmer products for a count of N multiplications and

(N-1) additions per weight . Therefore the total is:

4N flops

The computation of the eigenvalues from the (second order) determinant
condition involves 12 flops and one square root calculation. Finally, the
eigenvector computation requires N flops for each vector for a total of 2N
flops.

Hence the total operation count for the Prony-Lanczos procedure

requires:

(2N%+6N+12) flops + 1 square root

The above computations do not include the work required to select the

starting vector 90 using a DFT analysis. In this case,assuming a data

sequence zero padded to M points,we shall have:

MlcgoM flops

plus (M-1) additions for the determination of the maximum spectral peak.
(3). The power method computes the dominating eigenvalues and
eigenvectors ome pair at a time . The second pair will be computed following
a deflation of A. In general, the npumber of iteration steps depend on the
convergence criterion severity . We instead claim that two—steps are
generally enoug .o provide sufficient accuracy. The Fourier vector is again

selected as the starting vector b,.

12
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The first eigenvalue/eigenvector pair requires N2 2N flops. The
defiation step requires Nz flops and N2 floating point additions,
Bence (for a rank two matrix) the power method requires a totai of
5N2+4N  flops

plus N2 floating point addtiomns.

V. Simulation results

Let us assume that we have 8 data sequence which is composed of
uniformly spaced samples of two closely spaced complex sinusoids in white
noise, We shall follow the methods described earlier in section II & III to
caiculate the principal eigenvalues and eigenvectors.

The data sequence is given by the equation

x(n) = exp(j2nfin + ¢4) + exp(j2nfyn + ¢5) + w(n) (25)

with fq = 0.52Hz, f, = 0.5Hz and for n=1,2,...,25

Here, 25 data samples are used and the phase difference is A¢g = n/2
computed at the middle of the data set, effectively reducing the signal-to-
noise ratio in that region, thereby representing the worst case that can be
encountered. The frequency separation is less than the reciprocal of the
observation time. The data is zero padded to m=128 points and then the
maximum peak of the DFT is computed to yield the frequency of the Fourier
vector. This vector will be used as a starting eigenvector for the P-L and
Power methods later.

We construct the forward plus backward augmented covariance matrix A of




size (21x21) |, Its effective rank is two, The SVD routine ,the P-I method
and the Power method are employed tc solve for the eigenvalues and
eigenvectors (eigenpairs) of the matrix. The P-L method and the Power
method compute only the two principal eigenpairs. The mean values and
standard deviations of the eigenvalue estimates are given in Table I for an
ensemble of 500 experiments. The performance of the P-L and Power methods is
almost identical to the SVD (LINPACK) method for the first eigenvalune
estimates. At high SNR the second eigenvalue mean and standard deviation
estimate obtained from the P-L method is biased with respect to the
noiseless SVD results. However ,at low SNR the eigenvalue statistics :re
closer to the noiseless SVD results than the other two methods.

Table II presents the statistics of the distances of the P~L and Power
methods eigenvectors from those of the SVD method. The distance is the
inverse cosine of the angle between the subspaces spanned by the estimated
eigenvectors [41]. The results show that for the first eigenvector the P-L
estimate of the mean 1is less biased (about one order of magnitude) than the
Power method, whereas for the second eigenvector estimates they perform the
same. This shows that these vectors span virtually the same subspace as the
vectors computed from the SVD method. The eigenvector estimates were also
compared to the signal eigenvectors and the distances were computed as
above. The results show that at high SNR the eigenvector spanned subspaces
have a greater distance from the signal subspace than the SVD subspace. At
low SNR the distance is reduced and the second eigenvector statistics are
closer to the signal eigenvector than the SVD cigemnvector.

Table 11T shows the CPU time reyuired to compute the
eigenvalues/eigenvectors pairs for these methods. The P-L method is faster

than the SVD by the order of the size of the covariance matrix, which here

14




is 21. This roughly agrees with the theoretical cperation count we presented
in section IV, It is almost twice as fast as the Power method. Tnclusicn c¢f
the FFT computation in these two methods will offset some of their speed
advantage over the SVD ., Nevertheless ,the P-L method is again abott one
order of magnitude faster than the SVD method and tte Power method a little
more than half that (6 times faster).

The frequencies f, are then obtained from the eigenvectors of the
estimated covariance matrix by the T-K method [7]. For both estimates of
the mean and standard deviation ,as presented in Table IV,all three metkods

perform similarly down to 15 db. At Odb the P-L method yields slightly

better statistics thanm the other two metkods.

VI. Conclusion

Two methods,the Prony-Lanczos method and the Power metkod are proposed
for simple computation of approximations to a few eigenvectors and
eigenvalues of a Hermitian matrix. The computational speeds of these methods
were analyzed., The accuracies of the proposed methods were evaluated using
covariance matrices from data consisting of two sinusoids in a gaussian
noise environment. Comparisons were made with the corresponding eigenvectors
and eigenvalues obtained using the LINPACK mathematical library. The
suggested methods can substitute for the slower method of LINPACK if a few

eigenvalues or eigenvectors are needed.




Aggendix A

In this appendix we derive the eigenvalues and eigenvectors of the

covariance matrix R for the case of one and two sinusoids.

One Complex Sinuscid Case:

The data sequence is modelled by:

The covariance values of y(n) are:

N
(i,j) = = } *(a-1)y(a=j) i,j=1,2 L (A1)
» = - - ,=, IEEEE] (A.
ryy ij -y y (n-i)y(n-j i,j
n=L+1

Writing the covariance matrix R explicitly in terms of the signal, we have:

[ 2 2 -j 2 —ju, (L-1)]
|a1| Ial| e 19 |a1| e 399
5 g » 2 —jml(L‘2)
a e a la l e
I ll l 1' 1 (A.2)
2 jwl(L—l) 2
] |31| € [ail ]

We can diagonalize R by an orthogonal matrix U resulting in the following

16




equation:

*
T RO = (A.3)

an

The eigenvalues of R which occur along the diagonal elementsnof the above

equation,satisfy the following equation:

A, = tr(R) L ]a (A.4)

1

N

i

But the covariance matrix R is of rank=1, since it has only ome linearly

independent row (or column). The rest are obtained by multiplying by a

+

- jwlk
constant number (e ).
Then the eigenvector corresponding to the eigenvaloe XAy = L la1‘2 is:
i " erl eZle eJ(L—l)wl)
31T 4
17




since it annihilates every row of the matrix (R~k11). The constant ¢y can

be determined from the fact that the matrix U is orthonormal, hence:

which yields:

Hence finally:

jo 2jm1 _](L—l)m1

a =g eV e e ) (A.5)

and this is a Fourier vector with fundamental frequency w;.

Two Complex Sinumsoids Case:

The data sequences is modelled by:




vin) = a_ e +a, ¢ n=1,2,...,N

The covariance estimates are given by the expression:

1 N . ) —jwl(m—k)
rvy (k,m) = i } y {(a-X)y(p-m) = Iall e
) n=L+1
jw, {(mk)
* la l e 2t + a.a ‘v + a.a .v k,m= 1,2 L
2 172 1 271 2 e ey
where:
N . N _
_ 1 2 erl(n m) Jw2(n x)
Vi T L
n=L+1
N ju, (a-m)-ju. (o-k)
_ 1 } 332 1
V2 T N2
n=L+1

Rewriting the matrix R, we have:

R = Ml M2

(Lx2)(2xL)

where:

19
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Mp= Lagl® e+ x g |ag)? gp + 5* gy)
“2 _ [31. ezt}’r

e = (1 ed® erwl ej(L—l)wllT
ey = (1 erz eliuw ej(L—l)mz]T

and

‘j(wz-wl)n

If w; is an eigenvector of R corresponding to eigenvalue Ay, then:
Premultiplying by M,, we have:
MoM{Mouy = Ay My 1y (A.10)
Thus A; is also the eigenvalue of MyM, and the corresponding eigenvector is:
v1 = Myuy (A.11)
Premultiplying (A.10) again by Mg
and comparing (A.10) with (A.12)
Thos we can find the eigenvalues and eigemvectors of R by working with the

matrix M2M1 which is of order 2. Hence:

20




2 2 *
:(2.‘.{1 = L'al' + xg Iazl g + Lx
(A.14)
“ lo]
'allbg*+Lx Llazib + x.g‘
where
L1 jlo, = 0w )n L-1
1 < j
g = } e 2 Y el den (A.15)
n=0 n=0
The eigenvalues iy and Ay are found to be:
= 2 2 2 2
Ay = 1/2(L]ag | + L]ag|* + 2Rel{xg} + ((L|ag|* + L|ay|*+ (A.16)

2Re (xg1)2-4(12 - [g|2(|ag|?[ay]?-|x)?

= 1/2{L{a;|? + L]ay|? + 2Refzg} - ((L|aj|?® * L]ay|? + 2Reixg}?) -

12 =
$02 = (52 fag Plag[? - <[22
where
* -
{ala2 ) cos@—g— -2)Aw * sin h;L Aw sin 3
Re{xg} = Re A (A.17)
2(N-L) sin” ——

Note that a column of the adjoint of (MyMy-A;I) gives the eigenvector v; of
Mo M, .
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I 2 2 s
. } ’. - = - - - -_—
AdJ(Izhl AlI) (Llall xg) Ay Iazl g - Lx
(A.18)
2 2 *
—Ial| g-Lx (Llazl + x g )—ll
Therefore the eigenvector vy is : vy = [vyy v21]T
2
or vq = [(Llall‘ + xg)-Aq —!allzg—Lx]T (A.19)
Now the eigenvector my of R corresponding to Ay is:
8y = M9y
and hence,
ug = vyg Jagl? eg + xep) + vay(lag|? e + =7 o). (4.20)
a linear combination of the Fourier vectors e1 and g,.
Similarly, the eigenvector u, of R corresponding to Ay is:
= ’ 2 ’ 2 *
3y = vip' ag]%ey + xep) + vy’ (fag | epvxeyp) (A.21)
where Y-l' = [Vll' V21']T
and
v’ = Llag|? + 2" -ay (4.22)
- 2 _ *
va1' = ~laz] g - Lx

The rest of the eigenvalues of R are zero and the corresponding eigenvectors

are not unique.




[ SNR SVD P-L PM
mean= 22.0357 22.0126 22.0174
i st.dev= 0 0 0
| aeess | a2oes | a2iesss
3 0.2652 0.2655 0.2642
| mea | s | a220m
15
1.4927 1.4936 1.4892
'''''''' © assset | amszes | amsaas
’ 8.64389 8.7576 8.7477
Eigenvalue estimate A,
1.7107 0.5741 1.7131
i 0 0 0
| T ime | oases | 11
30
0.0497 0.3777 0.0493
_______ C 1sem o327 | e
" 0.2856 0.5357 0.2884
""""""  aosme | wewr | aasss
’ 2.7981 1.2625 2.63C1

Eigenvalue estimate 1,

TABLE I




First Eigenvector

0.3917 -4

0

0.1744 -3
0.1162 -3
0.4618 -2

0.3682 -2

SVD, PM

0.477C -4

Distances

0.6169 -4

0.8243 -1

0.2614 -1

Second Eigenvector Distances

TABLE

1T
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0.2581¢ +5

measured in time units ts,where

0.14050 +4

0.14119 +4

0.14065 +4

0.14029 +4

Computational Cost

TABLE

1 tg= 26.04166

P-L
0.15835 +4
0.15859 +4

0.15874 +4

j.sec

I1X

PM

0.27610 +4
6.27793 +4

0.27506 +4

0.27568 +4




SVD
mean= 0.5000
st.dev= 0

0.4999

0.0013

0.4961
0.0157

0.4331

0.1334

0.4999

0.0013

0.4952

0.0137

0.4620

0.0898

Frequency Estimate

0.5200

0

0.5201

0.0013

0.5249

Frequency Estimate f,

TABLE IV
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0.06190

0.5642

0.0580
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